
mGuard: Secure, Real-Time 
mHealth Data Distribution

Development Updates and Testbed Experiments

Suravi Regmi, Lan Wang, University of Memphis



● Growth of wearable health devices producing 
sensor data

● mHealth data produced by these devices used for 
diagnostics, therapeutics 

● Existing mHealth system had manual methods for 
data sharing (e.g. USB)

● Not real time and not secure
● Privacy and access control are crucial for health 

data

Use Case: Kyle, a running coach, needs real-time 
access to Alice’s(dd40c) accelerometer data for 
stride analysis.

Motivation

Running coach 
(Kyle)

Alice
(dd40c)



Producer: Receives the data encrypts and 
publishes

Controller: Controls access policies

Consumer: Subscribes and decrypts 
authorized data

NDN Repo: Persistent storage

PSync: Synchronizes data availability 
between producer and consumer

System Overview 

Controller sets Kyle’s access policy. Kyle subscribes to 
/dd40c/motion_sense/accelerometer and retrieves data 



mGuard uses attribute-based 
encryption to control access based 
on:
WHO : the requester is (e.g., Kyle)
WHAT: data is requested (e.g., 
accelerometer, gyroscope)
WHERE : the data was recorded 
(e.g., gym)
WHEN: the data was generated

Access Control

Time-Based Enhancement Enables policies like "Kyle may access data generated 
from November 1, 2024 to April 1, 2025”

policy-id       1
requester-names /ndn/org/md2k/kyle
attribute-filters
{
  allow {        

/ndn/org/md2k/dd40c/motion_sense/accelerometer
/ndn/org/md2k/dd40c/motion_sense/gyroscope

    /ndn/org/md2k/ATTRIBUTE/location/gym
from “November 1, 2024” 
to “April 1, 2025”
}

}

Dates need to be converted to unix timestamp before usage with the system



● PSync enables partial sync , consumers 
subscribe to specific streams

● Consumers send Hello Interest to get stream 
list

● Then subscribe using Sync Interests
● Sync updates sent every time there is new 

data updates
● Consumer fetches data

PSync Overview 

Kyle sees accelerometer stream data and subscribes to it.
Is notified every time there are new updates to that stream.



● Hello requests used static names -> 
consumers got cached/outdated lists

● No automatic stream change notification
● User missed new data stream because it 

wasn't dynamically advertised
● Frequent polling  defeated Sync's purpose

PSync Issue

Kyle didn’t get notified about 
gyroscope stream. Even though he 
has access to it.



● Introduced /<app_prefix>/default/ as a default stream
● Combining Hello Protocol and Sync Protocol
● Add a default stream: ndn/org/md2k/mguard/default/<seq>
● Consumers are always subscribed to it.
● Producer publishes stream updates (add/remove) to this stream.
● Default stream seq number updates after each change.
● Sync protocol delivers these updates like any other update.

Solution: Default Stream

Kyle is automatically subscribed to default which lets him know 
hey a new stream is also available for subscription.



Experiments
Topology: Producer (with Repo), controller, and consumer 3 different nodes.
Execution Order: Controller, Producer , consumer start then data generation 
Goal: Evaluate system behavior under high data volume with real-time encryption and repo 
insertion.
Previous Experiments:
● Initially used manual pacing of data generation to avoid system crashes.
● Tests in mini-ndn provided fresh runs and behaviour  of system on different nodes. 
● Finally to figure out real world issues we also ran the experiment in testbed.

Issues:
● Psync Issues with cached data and no stream update notifications.
● CK(Content Key) used to decrypt data ended up being larger than the data itself.
● After time attribute based encryption  it expanded to be 0-4 segments of data packets.
● Time time granularity for CK generation was previously seconds.
● In bulk insert cases for repo insertion there were crashes for large data generation.



Experiments
Current System
● Time attribute based encryption and access control
● Psync Protocol Updates.
● CK Granularity Update: Changed from seconds to minutes to 

reduce the number of CKs and prevent fetch timeouts
● Introduced a token-based scheduler to manage insertion rate

○ 50 tokens per refill
○ Refill interval dynamically adjusted between 200–4000 ms

● System now queues and inserts data reliably under sustained load.



Experiment Scale & Throughput

● Batch sizes: 1–5
● Data Streams: 5
● Data per stream: 5–599
● Data packets per run: 3000+
● Data generation:

○ 3000 packets in 14s (~214 pkt/s)
○ 8985 packets in 35s (~256 pkt/s)

● System throughput: ~50 data/sec (generation to storage)
● No crashes — system stable even under backlog

Insights

● Previous set of experiments results we had were for 1-8 data point publication per second.
● Now that's been expanded up to 50 data points
● Queue absorbs bursty input
● Data generation can run at full speed without modification
● Flow control + encryption + repo insert path now robust

Experiments



Setup: Producer, controller, and consumer on 3 
separate nodes
Experiments: 13 runs

● data: 20–1005 packets
● Manifests: 5–122 data name 
● CKs: 20–332 packets 

Results:

● Correct Psync Behaviour
● No repo crashes
● Occasional retries for CK fetch
● Correct content fetch

Issues:

● Partial ck paket being fetched

Next Steps:

● Gather precise performance metrics
● Introduce network variability
● Scale consumers and experiment durations
● Decouple producer and repo to separate 

nodes.

Testbed Experiment

Controller

Consumer
(Kyle)

Producer



● Extensive experiments on the time attribute based access control.

● Robust error handling on all modules

● Run larger-scale experiments with increased batch sizes and stream counts

● Test with node failures and restarts

● Separate producer and repo for deployment testing

● Improve UI, visualizing streams

Next steps





Advisor: Dr. Lan Wang

Collaborators: Adam Thieme, Saurab Dulal, Tianyuan Yu, Dr. Lixia Zhang

Lab: MD2K Lab, University of Memphis

Funding:  NSF Award #2019085

Special Thanks: MD2K team and NDN community for guidance and 
infrastructure support

Acknowledgement



Any questions?

Q&A



Thank You!


