mGuard: Secure, Real-Time
mHealth Data Distribution

Development Updates and Testbed Experiments

Suravi Regmi, Lan Wang, University of Memphis

Motivation

e Growth of wearable health devices producing
sensor data

e mHealth data produced by these devices used for
diagnostics, therapeutics

e Existing mHealth system had manual methods for
data sharing (e.g. USB)

e Not real time and not secure

e Privacy and access control are crucial for health
data

Use Case: Kyle, a running coach, needs real-time
access to Alice’s(dd40c) accelerometer data for
stride analysis.

Alice
(dd40c)

|

*

Running coach
(Kyle)

System Overview

Producer: Receives the data encrypts and
publishes

i Encrypted Data
Sensor Data L A Producer [emeees 4 NDN REPO

Conftroller: Controls access policies

Encrypted Data
(NAC-ABE) o
Consumer: Subscribes and decrypts

authorized data

Availablet Streams
Decr'yptlon Keys .
PRSI0 el NDN Repo: Persistent storage

(NAC-ABE)

PSync: Synchronizes data availability
between producer and consumer

Controller sets Kyle’s access policy. Kyle subscribes to
/dd40c/motion_sense/accelerometer and retrieves data

Access Control

mGuard uses attribute-based
encryption to control access based
on:

WHO : the requester is (e.g., Kyle)
WHAT: data is requested (e.q.,
accelerometer, gyroscope)
WHERE : the data was recorded

(e.9., gym)
WHEN: the data was generated

Time-Based Enhancement Enables policies like "Kyle may access data generated
from November 1, 2024 to April 1, 2025”

Dates need fo be converted to unix timestamp before usage with the system

PSync Overview

« PSync enables partial sync, consumers PSync Protocols
subscribe to specific streams
. Consumers send Hello Interest to get stream

. Used for discovering available
| |ST data streams from a producer.

. Then subscribe using Sync Interests

. Sync updates sent every time there is new
data updates

. Consumer fetches data

Notifies consumers of new
data availability.

.'/;'

Kyle sees accelerometer stream data and subscribes to it.
Is notified every time there are new updates to that stream.

-

|;£'|") Consumer sends Hello Interest
Producer sends data stream
list to consumer

. Hello requests used static names ->

consumers got cached/outdated lists
« No automatic stream change notification T
« User missed new data stream because it .

wasn't dynamically advertised |
« Frequent polling defeated Sync's purpose

Consumer does not know
about new stream

Consumer needs to
§® sends Hello Interest
Again

Kyle didn’t get notified about
g gyroscope stream. Even though he oo miis
o has access to it.

Consumer initiates contact with
producer

Producer responds with Data [y
Streams b

Consumer requests
synchronization with producer

Producer responds with Sync Data SC'

Producer adds a new data
stream

Consumer remains unaware ﬁ

Consumer sends another
request for updates

Producer updates stream list Elé

Solution: Default Stream

Intfroduced /<app_prefix>/default/ as a default stream
Combining Hello Protocol and Sync Protocol

Add a default stream: ndn/org/md2k/mqguard/default/<seqg>
Consumers are always subscribed 1o it.

Producer publishes stream updates (add/remove) to this stream.
Default stream seq number updates after each change.

Sync protocol delivers these updates like any other update.

Ak
(W - Kyle is automatically subscribed to default which lets him know
ﬁ hey a new stream is also available for subscription.

Experiments

Topology: Producer (with Repo), controller, and consumer 3 different nodes.
Execution Order: Controller, Producer , consumer start then data generation
Goal: Evaluate system behavior under high data volume with real-time encryption and repo
insertion.
Previous Experiments:
e Initially used manual pacing of data generation to avoid system crashes.
e Tests in mini-ndn provided fresh runs and behaviour of system on different nodes.
e Finally to figure out real world issues we also ran the experiment in testbed.

Issues:
e Psync Issues with cached data and no stream update notifications.
CK(Content Key) used to decrypt data ended up being larger than the data itself.
After time attribute based encryption it expanded to be 0-4 segments of data packets.
Time time granularity for CK generation was previously seconds.

(]
(]
(]
e Inbulkinsert cases for repo insertion there were crashes for large data generation.

Experiments

Current System

Time attribute based encryption and access control

Psync Protocol Updates.

CK Granularity Update: Changed from seconds to minutes to

reduce the number of CKs and prevent fetch timeouts

Introduced a token-based scheduler to manage insertion rate
o 50 tokens per refill

o Refill interval dynamically adjusted between 200-4000 ms
System now queues and inserts data reliably under sustained load.

Experiments

Experiment Scale & Throughput

Data Generation Rate vs System Throughput
=== System Throughput (~50 pkt/s)

N
v
o

Batch sizes: 1-5

Data Streams: 5

Data per stream: 5-599

Data packets per run: 3000+

Data generation:
o 3000 packets in 14s (~214 pkt/s)
o 8985 packets in 35s (~256 pkt/s)

System throughput: ~50 data/sec (generation to storage) (3000 pkt 145) (8985 prt 1 359)

No crashes — system stable even under backlog

= = N
o v o
S =) S

Data Generation Rate (packets/sec)

%
o
T

o

Insights

Previous set of experiments results we had were for 1-8 data point publication per second.
Now that's been expanded up to 50 data points

Queue absorbs bursty input

Data generation can run at full speed without modification

Flow control + encryption + repo insert path now robust

Setup: Producer, controller, and consumer on 3
separate nodes
Experiments: 13 runs

Testbed Experiment

e data: 20-1005 packets
e Manifests: 5-122 data name

o CKs: 20-332 packets

FRANKFURT

m - © Results:

Correct Psync Behaviour
No repo crashes

osna Occasional retries for CK fetch
(Kyle)

ARIZONA
MML2
ANYANG WASEDA

URIC

e Correct content fetch

SRRU

MEMPHIS BERN

SINGAPORE ISSUGS:

UFBA

Partial ck paket being fetched

Next Steps:

Gather precise performance metrics
Introduce network variability

Scale consumers and experiment durations
Decouple producer and repo to separate
nodes.

Next steps

e Extensive experiments on the time attribute based access control.

e Robust error handling on all modules

e Run larger-scale experiments with increased batch sizes and stream counts
e Test with node failures and restarts

e Separate producer and repo for deployment testing

e Improve UI, visualizing streams

Available Streams

Battery

Gyroscope

Accelerometer

Semantic Location

MGuard: adam

Acknowledgement

Advisor: Dr. Lan Wang

Collaborators: Adam Thieme, Saurab Dulal, Tianyuan Yu, Dr. Lixia Zhang
Lab: MD2K Lab, University of Memphis

Funding: NSF Award #2019085

Special Thanks: MD2K team and NDN community for guidance and
infrastructure support

Q&A

Any questions?

Thank You!

