

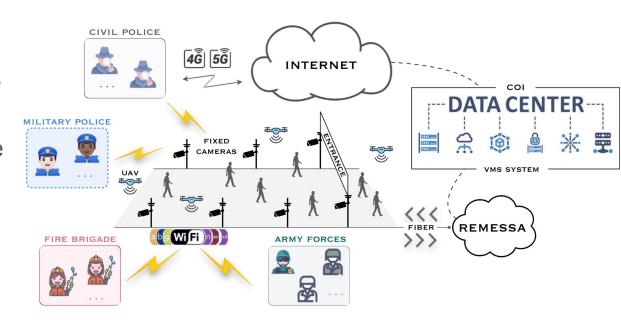
Establishing Trust Across Zones in NDN: Challenges and Design Considerations

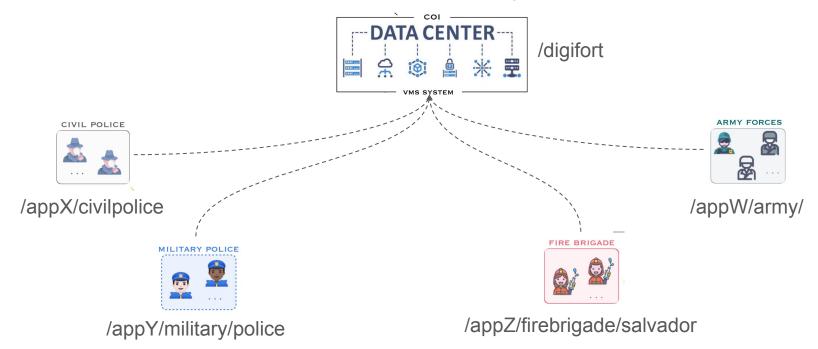
Adriana V Ribeiro, André Luiz R Madureira, Leobino N Sampaio Federal University of Bahia, Brazil

Our team

- Prof. Dr. Leobino Sampaio
 - UFBA's Associate Professor Computer Science Department
 - > 20 yrs focused in Internet technologies
 - Visiting researcher (sabbatical) UCLA (2020)
- Adriana Viriato Ribeiro
 - PhD student in Computer Science
 - Visiting scholar UCI (2022 2023)
 - Thesis investigation: Community-scale IoT communications through future Internet architectures
- André Madureira
 - PhD student in Computer Science
 - Visiting B.S. student at University of Georgia (2014 2015)
 - Thesis investigation: Congestion control of Mobile NDN-IoT communications

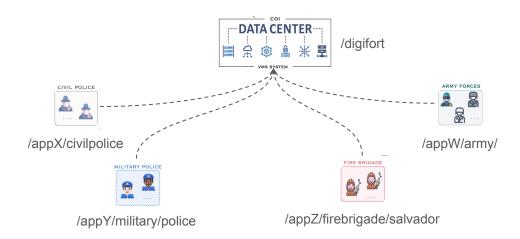
Use case: Salvador Carnival


- A public and free festivity organized by the Salvador
 City Hall and the state government during seven days
- Number of people: 11 millions in 2025
- An important requirement: granting public order and safety
 - Integrated coordination of security representatives of independent institutions with their IT governance
 - More than 30,000 security professionals working together
 - Military and Civil Police, Fire Brigade, and Army forces
 - Devices: stationary devices (i.e., fixed cameras),
 slow-moving devices (i.e., wearables and cameras installed in the custom cars), and moderate-moving devices (i.e., flying drones)

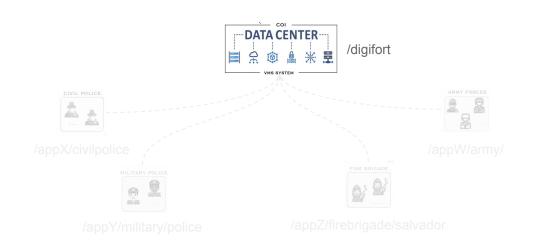

Surveillance system

The operation and Intelligence Center receive data from different sources to investigate security incidents in real-time and support officers decisions on the field.

Surveillance system through a NDN perspective


The main security application is centralized and collect data from several other applications from each security institution.

Security Bootstrapping within a trust zone


The main security application is centralized and collect data from several other applications from each security institution.

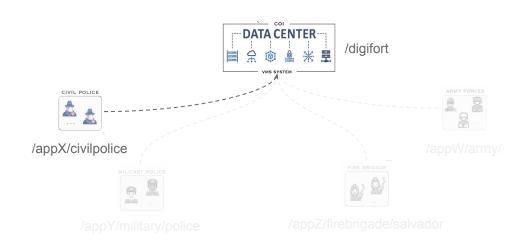
Each application has its own producers and consumers

Security Bootstrapping within a trust zone

The main security application is centralized and collect data from several other applications from each security institution.

Each application has its own producers and consumers

All nodes share the same trust anchor


All nodes have installed the trust schema

<u>Data producing:</u> All nodes have an assigned name and can produce content within the zone, according to the rules defined in the trust schema

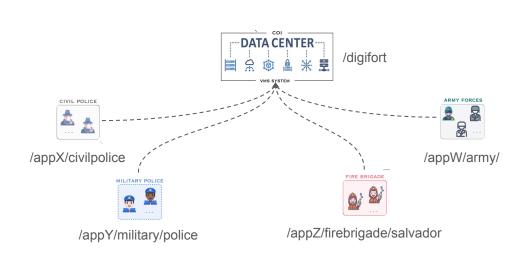
<u>Data consumption:</u> All nodes belonging to the same zone can validate data: i) authenticate the producer; and ii) check the producer legitimacy

Data consumption involving different trust zones

The main security application is centralized and collect data from several other applications from each security institution.

The entities in /digifort application must be able to consume data from the other applications

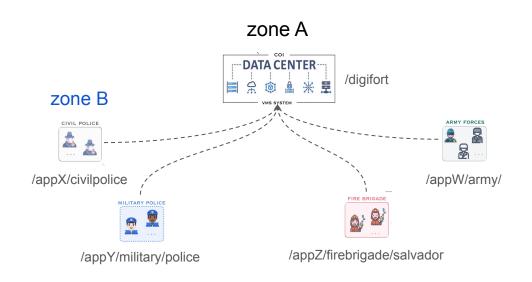
The nodes **HAVE DIFFERENT** trust anchors and trust schemas


Data consumption:

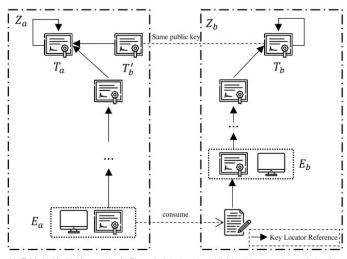
The entities from digifort **CAN NOT** authenticate the producer from civil police app, because they have different trust anchor

The entities from digifort **CAN NOT** check the producer legitimacy, because they do not have the other zone trust schema

Establishing Trust Across Different Zones

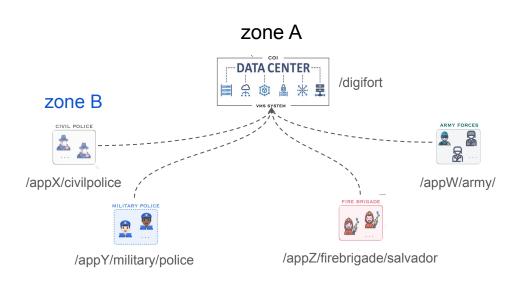

Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?

Let's borrow some ideas from Intertrust design...


Zone authentication

Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?

Zone a authenticates Zone b by allowing Tb as an external termination point of cryptographic verifications.


Zone Authentication

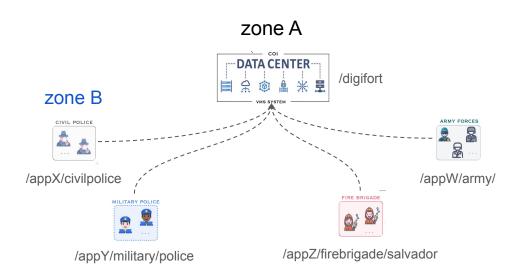
Yu T, Ma X, Xie H, Kocaoğullar Y, Zhang L. Intertrust: establishing inter-zone trust relationships InProceedings of the 9th ACM Conference on Information-Centric Networking 2022 Sep 6 (pp. 180-182).

Data consumption and validation across zones

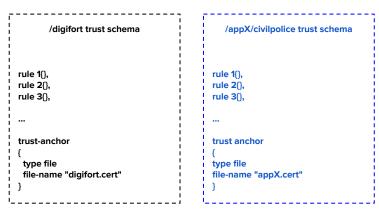
Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?

After Zone Authentication...

The entities from zone A (digifort) **CAN** authenticate entities from zone B (civil police app), since *Tb'* is the zone B trust anchor signed by zone A trust anchor.

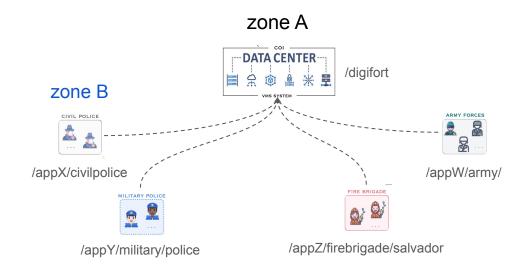

but

They still need to verify whether is a legitimate producer in zone A's trust model.


All entities in Zone b are authenticated by Zone a after Zone Authentication, as all the verification chains of their data packets terminate at Tb.

Learning trust policies

Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?

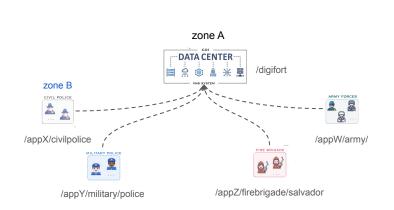


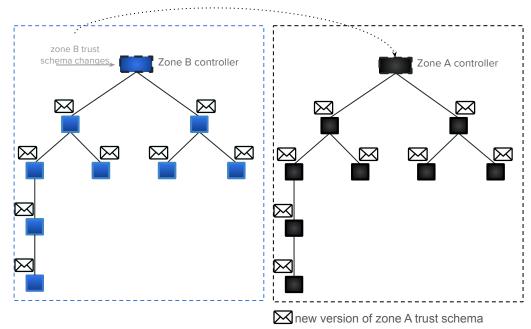
Zone Authorization?

Zone *a* needs to define trust rules on the data produced by *Zb* entities can be validated

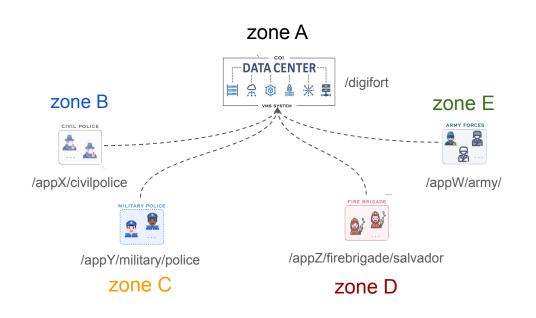
Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?

Zone Authorization?

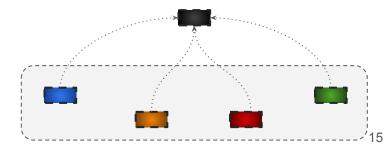

The entities from zone A (digifort) **CAN** check the producer legitimacy, because they have the other zone trust schema information


However, changes in zone B trust schema will trigger changes in zone A trust schema

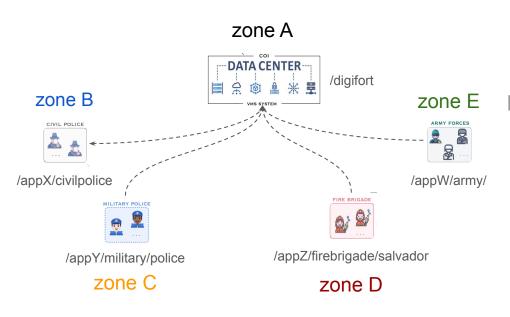
```
/digifort trust schema


rule 1(),
rule 2(),
rule 3(),
...
trust-anchor? {
type file
file-name "appX.cert"
}
rule 1(),
rule 2(),
rule 3(),
...
{
trust-anchor
{
type file
file-name "digifort.cert"
}
```

Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?

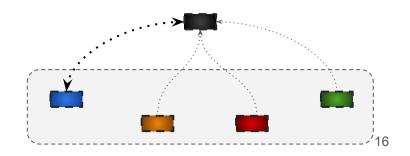


Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?



The problem escalates...

every time an authenticated zone changes its trust schema, zone A must update its own trust schema



Considering that each application is a different trust zone, how can entities in zone A (e.g. digifort app) consume and validate data that was produced by entities in zone B (e.g. Civil Police)?

Another design consideration...

Trust relations can be unidirectional or bidirectional (e.g. zone A needs to consume data from zone B, and vice versa)

Summary of the questions and design considerations

- What is the best way to learn zone B trust rules in zone A?
- How can we deal with trust schemas synchronization from several zones?
- What is the best way to learn trust policies in a bidirectional trust relation?

Q/A Thanks! leobino@ufba.br

