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INTRODUCTION

e Data-centric communication is more suitable for today's applications than
host-centric communication.

ovehicular networks
ovideo conferencing
osocial networking

* Named Data Networking is a promising Internet architecture that focuses
on data rather than location of host.

o Built-in data multicast
o In-network caching

o Multipath forwarding
o Secured data
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Problem Statement

e Multicasting in multi-access networks (e.g. Wifi)
supports group communication and reduces
unnecessary transmission

* Without proper coordination, many Interest and Data
packets may flow across the network

* Even with just two consumers, multiple Interest
packets can be generated for the same data, and
increasing the number of nodes can cause packet
flooding

* The same applies to Data packets, leading to further
redundancy

* If nodes briefly wait before forwarding packets, they
may suppress duplicates and reduce network
overhead
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Existing Solution

 Some researchers [1,2, 3] used random wait time between fixed [min, max]
interval before sending the Interest/Data packets
 If interest is overheard during the wait time, the interest transmission is canceled
* Not adaptive to the number of consumers and producers

e Dulal et. al. introduced Adaptive suppression mechanism [4] that relies
solely on observation of duplicate packet counts.

* Unclear how to tune ADS parameters like duplicate threshold, smoothing factor,
multiplicative factor etc. for different networks



Design Goal and Solution

* Goal: Reduce redundant NDN traffic in multi-access networks
without negatively impacting data transfer time (one-hop scenario)

 Solution: Reinforcement Learning (RL) is suitable for dynamic
environments.

o Each node experiments with different suppression time and learns a policy that
reduces duplicates under varying network conditions.

o The reward guides the node to increase or decrease the suppression time based
on the network state
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PIT and CS Fig: Computation of Suppression time as RL task
* Node with RL module acts as

agent that waits briefly before * The Agent observes the current state (S,)

forwarding packets * Takes the action (A,) which is to wait for the

computed suppression time i
* Environment is transitioned to next State (S,,,).
* The Agent receives reward (R,) based on outcome



RL Module (Actor Critic Network)

* State captures important environment embesing o2 Ador head
information the agent needs to decide oy s, o p : -
how long to wait before forwarding N
packet P

* np — Name Prefix V) —
* st —Suppression Time waited by agent . 1 ot neac
e dc - Duplicate Count ek
« p- Packet Type S @
 wf —Boolean status indicating if the node npt%;t%dqﬂig .

forwarded the packet Fig: Actor Critic Network

* NDN represents the Environment

 Embedding layer converts the input state to dense vector representation

* Fully connected layers extract relevant features from the input

* Actor head computes the suppression time (action to take)

* Critic head evaluates the action by providing feedback to the Actor head,
indicating how good the action was. .



Model Learning

Initialize the weights of the neural network
Collect Experience (sequence of S, A, R, St,,---)

After taking action, Critic evaluates action using TD Error:

TD Error (8) = Rt + yV(S,.;) - V(S,)
where V(S) represents how good it is to be in the state S and y is the discount factor

Update the Actor’s policy using gradient ascent method:
0 < 8+ aVylogn(als;0)é
where © are parameters of actor, a is learning rate, Vg log ﬂ'(a\s; 9), is the gradient of the log-probability of taking action a in state s.

Critic is updated to minimize mean squared error between the predicted value
(V(S,)) and actual outcome (R + yV(S,,,))

¢+ ¢ — aVy(8?)

where ¢ is critic parameter



Measurement Module

RL module retrieves current state of
environment from the Measurement table
Measurement table stores:

* Name prefix

* Number of duplicate packets
* Forwarded status of the packet

Suppression time is computed when a
measurement table entry is removed

Data measurement entry is removed when
its record expires

An Interest measurement entry is removed

either:

 Whenitis satisfied by a Data packet
* When the record is expired

measurement module
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< measurement no ) | measurement table
or Data table? (interest) | genedule record expiration
(data) |

Interest
Yes expires
ne RL module to
compute < remove the v
suppression time packet  S—
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- schedule record expiration time
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Data—»
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Fig: Measurement Module



Overview of packet processing pipeline

Incoming packet processing pipeline

* The incoming packet is checked if the same
packet is scheduled for the transmission

* If yes, cancel the schedule, this decrease
duplicate interest packet or data packet

Outgoing packet processing pipeline

* Before forwarding the packet, check if
the packet is already in measurement
table, indicating if it had been recently
forwarded (by this node or others)

* |f yes, drop the forwarding, decreasing
the possible duplicates

Interest/Data (I'D) Same /D measurement |
from neighbors /D scheduled for o x module |
ransmission? 2,

yes
h

local forwarding
pipeline
(network layer)

cancel scheduled
1D

Fig: Incoming Packet Processing Pipeline
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forwarding pipeline » -~ easurement_- Interest/Data
‘-~..t_‘tlable':?ﬂ_,..--
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after -:nea;:ement ' forward
set wailTime .~ | Interest/Data
wait time || module to the network
L / (to the network)
Fig: Outgoing Packet Processing Pipeline
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Experiment

* Topology of the experiment:
e 1 producer, 1-7 consumer
* File size: 1 MB
* One hop scenario, multi-access network

e Emulator: Mini-NDN Wifi

* Use catchunks/putchunks over multi-access link to publish and fetch
packets
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Result

 As the number of nodes in the network increases, RL-ADS reduces the
number of packets more effectively.
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Result

ADS is the most efficient approach for File Transfer Time
minimizing file transfer time as the number = Wihout Suppression = ADS = RL-ADS
of consumers increases =
RL-ADS has the highest file transfer time:
* FIFO-based communication between
C++ and Python
* Neural network computational
overhead during decision-making also
causes some delay

2.0

1.5

1.0

File Transfer Time (second)

0.5

0.0

e State does not include any observation O 2 3 4 5 6 7

related to round trip time. As a result, No. of Consumers
the reward does not file transfer time
into account.
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Conclusion

e Designed Reinforcement learning based suppression mechanism in
NDN forwarding

* Implemented Actor Critic Algorithm to compute the suppression time

 Compared the performance of Actor Critic Algorithm with Adaptive
Suppression Mechanism and No suppression Forwarding mechanism
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Future work

* Online finetuning of the model to adapt in different network
conditions

* Improve inter process communication
* Explore other RL algorithms
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