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INTRODUCTION
• Data-centric communication is more suitable for today's applications than 

host-centric communication.
ovehicular networks
ovideo conferencing
osocial networking

• Named Data Networking is a promising Internet architecture that focuses 
on data rather than location of host.
o Built-in data multicast
o In-network caching
o Multipath forwarding
o Secured data
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Problem Statement
• Multicasting in multi-access networks (e.g. Wifi) 

supports group communication and reduces 
unnecessary transmission
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• If nodes briefly wait before forwarding packets, they 
may suppress duplicates and reduce network 
overhead

• Without proper coordination, many Interest and Data 
packets may flow across the network

• Even with just two consumers, multiple Interest 
packets can be generated for the same data, and 
increasing the number of nodes can cause packet 
flooding

• The same applies to Data packets, leading to further 
redundancy



Existing Solution

• Some researchers [1,2, 3] used random wait time between fixed [min, max] 
interval before sending the Interest/Data packets
• If interest is overheard during the wait time, the interest transmission is canceled

• Not adaptive to the number of consumers and producers

• Dulal et. al. introduced  Adaptive suppression mechanism [4] that relies 
solely on observation of duplicate packet counts.
• Unclear how to tune ADS parameters like duplicate threshold, smoothing factor, 

multiplicative factor etc. for different networks
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Design Goal and Solution

• Goal: Reduce redundant NDN traffic in multi-access networks 
without negatively impacting data transfer time (one-hop scenario)

• Solution: Reinforcement Learning (RL) is suitable for dynamic 
environments.
o Each node experiments with different suppression time and learns a policy that 

reduces duplicates under varying network conditions.

o The reward guides the node to increase or decrease the suppression time based 
on the network state
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System Design

• Two main components:
• NDN Forwarding Daemon
• Node with RL module

• NFD handles the NDN packets 
across the network managing FIB, 
PIT and CS

• Node with RL module acts as 
agent that waits briefly before 
forwarding packets
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Fig: Computation of Suppression time as RL task

• The Agent observes the current state (St)
• Takes the action (At) which is to wait for the 

computed suppression time
• Environment is transitioned to next State (St+1). 
• The Agent receives reward (Rt) based on outcome
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RL Module (Actor Critic Network)
• State captures important environment 

information the agent needs to decide 
how long to wait before forwarding 
packet
• np – Name Prefix
• st – Suppression Time waited by agent
• dc – Duplicate Count
• p – Packet Type
• wf – Boolean status indicating if the node 

forwarded the packet 

• NDN represents the Environment
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• Embedding layer converts the input state to dense vector representation
• Fully connected layers extract relevant features from the input
• Actor head computes the suppression time (action to take)
• Critic head evaluates the action by providing feedback to the Actor head, 

indicating how good the action was.



Model Learning

• Initialize the weights of the neural network 

• Collect Experience (sequence of St, At, Rt, St+1,…)

• After taking action, Critic evaluates action using TD Error:
TD Error (δ) = Rt + γV(St+1) − V(St) 
      where V(S) represents how good it is to be in the state S and γ is the discount factor

• Update the Actor’s policy using gradient ascent method:

      where Ɵ are parameters of actor, α is learning rate,                          is the gradient of the log-probability of taking action a in state s.

• Critic is updated to minimize mean squared error between the predicted value 
(V(St)) and actual outcome (R + γV(St+1))

                                
               where ϕ is critic parameter
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Measurement Module
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• RL module retrieves current state of 
environment from the Measurement table

• Measurement table stores:
• Name prefix
• Number of duplicate packets
• Forwarded status of the packet

• Suppression time is computed when a 
measurement table entry is removed

• Data measurement entry is removed when 
its record expires

• An Interest measurement entry is removed 
either:
• When it is satisfied by a Data packet
• When the record is expired

Fig: Measurement Module



Overview of packet processing pipeline
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• The incoming packet is checked if the same 
packet is scheduled for the transmission

• If yes, cancel the schedule, this decrease 
duplicate interest packet or data packet

Incoming packet processing pipeline

Outgoing packet processing pipeline
• Before forwarding the packet, check if 

the packet is already in measurement 
table, indicating if it had been recently 
forwarded (by this node or others)

• If yes, drop the forwarding, decreasing 
the possible duplicates



Experiment

• Topology of the experiment:

• 1 producer, 1-7 consumer

• File size: 1 MB

• One hop scenario, multi-access network

• Emulator: Mini-NDN Wifi

• Use catchunks/putchunks over multi-access link to publish and fetch 
packets
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Result
• As the number of nodes in the network increases, RL-ADS reduces the 

number of packets more effectively.
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Result
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• ADS is the most efficient approach for 
minimizing file transfer time as the number 
of consumers increases

• RL-ADS has the highest file transfer time:
• FIFO-based communication between 

C++ and Python
• Neural network computational 

overhead during decision-making also 
causes some delay

• State does not include any observation 
related to round trip time. As a result, 
the reward does not file transfer time 
into account.



Conclusion

• Designed Reinforcement learning based suppression mechanism in 
NDN forwarding

• Implemented Actor Critic Algorithm to compute the suppression time

• Compared the performance of Actor Critic Algorithm with Adaptive 
Suppression Mechanism and No suppression Forwarding mechanism
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Future work

• Online finetuning of the model to adapt in different network 
conditions

• Improve inter process communication
• Explore other RL algorithms
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