
Pollere LLC www.pollere.net

Keeping Time:
Trust Domain Virtual Clock Distributor (TDVC)

Kathleen Nichols
nichols@pollere.net

Context: Defined-trust Communications

• The Defined-trust framework employs concepts from and is inspired by a large
body of previous work and grew out of work with NDN

• Defined-trust Domains are a type of Limited Domain (RFC8799) focused on
security and using Defined-trust Transport (DeftT) protocol

• Rules specifying the networking of application information are defined in a
communications schema that governs all information exchanged, including
certificates of identity chains, and is integrated with the transport

• Member identities are distributed as a chain of trust, public certificates that
have each been signed by the signing key associated with the next certificate
in the chain and, at the root, signed by the trust anchor of the trust domain

Open source code base at https://github.com/pollere/DCT. Documentation at:
https://pollere.net/publications.html, https://pollere.net/Txtdocs/defTrust.html,
https://www.tdcommons.org/dpubs_series/7887

TDVC details are specific to Defined-trust Communications, but the exploitation
of collection-based communication semantics to enable robust and efficient
implementations can also apply to NDN

2

https://www.tdcommons.org/dpubs_series/7887

• DeftT provides a publish/subscribe API to collections of hierarchically named
units of information (publications) (MQTT-like) along with its internal
collections that are part of the transport’s infrastructure

• Each collection is managed by its own instance of syncps that sends and
receives publications wrapped in its own protocol data units (PDUs) which are
exchanged using system transports, e.g., UDP, TCP, IPv6, LoRA

• PDUs are hierarchically named and prefixed with the domain identifier and
their collection name

• Publications are timestamped to prevent replay attacks, among other uses,
requiring a shared publication clock throughout the Trust Domain

» Scott Gray of Operant found many devices in the field do not use an NTP
and do not use external communications

Solution: Give DeftT an integrated, self-contained virtual clock calibrated to its
required accuracy

 Note: DeftT publications and PDUs are both similar to NDN Data in format

3

Problem: Domain-wide clock synchronization

Diagram of DeftT

A Trust Domain may span
subnets (color) interconnected
by relays
Not all devices of a subnet
may hear each other directly

4

R

R

M

M M
M

M

M

M M

M

M

M

M M

• Internet-based approaches (e.g., NTP) access globally accurate time servers
• Sensor network approaches designate or elect primary sources and build

trees to distribute the reference time. Estimate skew and offset parameters
relative to the reference.

• In our applications, neither approach is attractive; looking for something self-
contained and robust to communication topology changes and failures.
Further, we can approach calibration somewhat differently:

– TDVC doesn’t need to track “actual” time nor be monotonic over its history. Relative
precision can be as large as ~0.5 seconds for the usual case of publications with a
lifetime of 1 second (though aim for better)

– using collection-based semantics, can ignore skew estimation and just periodically
synchronize the offset of the virtual clock

– the collection is updated with each member’s virtual clock often enough to catch
drifting out of tolerance (~10 minutes)

5

There are a lot of ways to calibrate clocks in a network

Certificate publications that make up identities have a lifetime in hours to
years; thus, DeftT’s initial membership joining process succeeds even
when clocks differ
Timing problems can arise when exchanging publications with shorter
lifetimes, e.g., setting up group encryption or sending application
messages
TDVC is managed by a distributor module that starts after initial
membership certificates have been exchanged (joining):
– uses a collection to provide a DeftT-specific clock integrated with transport
– does not need to be particularly close to actual time, relative precision of this

clock can be as large as ~0.5 seconds for the usual case of publications with a
lifetime of 1 second (but aim for better)

– algorithm is completely distributed between members
– no use of external servers
– members with access to precise clocks can be designated with a capability in

the identity
– TDVC calibration is within single-hop reachable neighborhoods and

propagates gossip-style (non-default syncps parameters)
6

Trust Domain Virtual Clock (TDVC) Overview

• Members periodically send their virtual clock as timestamps in publications. To
keep the clock samples fresh and minimize delays, pubs:
– can only be received by members reachable within a single-hop (a neighbor)
– are not resent by others
– are not valid long enough to be sent more than once

• Periodicity should be short enough for timely detection of out-of-tolerances but
long enough to avoid flooding communication links

• Virtual clock publications contain the number of neighbor members (including
the sending member itself) within tolerance of the sender’s current virtual clock
estimate and the state of the sender

• A newly started member sends its virtual clock (which will be identical to its
system clock) with an in-tolerance neighborhood size (nhSz) of 1

• Members that receive a clock publication with a timestamp that differs from its
local virtual clock by more than the tolerance enter a calibration cycle:
– difference of received clock from local clock is saved, indexed by the unique identity of

the sender
– member sets its state to 2, sends a set of its own clock publications (~3 to 8)
– incoming clock publications are processed (next slide)

7

TDVC’s calibration method - monitoring for tolerance

• Receiving members compute clock difference values (amount local virtual
clock is ahead of sender, positive or negative)
– if this is the first clock publication from this neighbor or if the neighbor’s state has

changed, save in a record at sender’s id
– else compare the difference to the stored value for the sender, replacing the old value if

it is smaller
– update the record with the sender’s current nhSz and state
– minimum received value is used to alleviate the non-determinism of processing and

transport delays
• Members perform an offset computation a short delay after sending their set of

clock publications
• Rounds of sending clock publication sets and computing offsets continue until

all neighbors are within tolerance.
– a member in-tolerance with all its neighbors moves to state 1 and must remain in

tolerance through several rounds before moving to calibrated state 0
– a member not in calibration increments its state (rolling over to 2)

• The extra delays are for networks that are not fully connected

8

TDVC’s calibration method - calibration cycle

1. Replicate (in a vector) each neighbor’s quantized minimum clock difference values by its nhSz less
the minimum nhSz value plus 1. Local clock difference is represented by 0s.

2. If the absolute value of all clock differences are less than tolerance, set state=1 and nhSz is equal
to the number of distinct neighbors heard from plus 1 (for self). Go to step 8.

3. Increment state, rolling over to 2 at 255.
4. Set adjust to the statistical mode of the clock differences vector. If more than one value at the mode,

adjust = smallest non-zero absolute value difference. In case of a negative and positive at that
value, use the negative, i.e., move in the forward clock direction. (other tie-breakers are possible)

5. If adjust is zero, check for an impasse where adjust has been zero and not all neighbors are in
tolerance for a several rounds (e.g., ten). If an impasse and there are negative difference values,
adjust = smallest absolute value

6. Set nhSz to the number of neighbors whose clock difference values are within tolerance of adjust
plus one (for self since adjust will put the local virtual clock in tolerance) If nhSz is equal to the total
size of the neighborhood (all members heard from), state = 1 (in tolerance and counting neighbors)

7. If adjust != 0, add adjust to the running virtual clock calibrate for this calibration cycle
8. The next set of clock publications use the updated state and nhSz and subtract calibrate from the

local virtual clock to compute the publication timestamp.
9. When all neighbors have been in state 1 for a set number of rounds (~3), calibration round is

complete, state = 0, local virtual clock -= calibrate and calibrate = 0

• Calibration restarts if an out-of-tolerance neighbor is detected (via periodic clock publications)

• Step 4 above can be implemented with approaches other than using the mode; e.g., a version using
the median was also used but doesn’t converge as well for non-fully connected networks

9

Offset computation

Relays act as a single node or member in the virtual clock distribution. This is
implemented by:

• Individual DeftTs of the relay pass all clock difference samples to the
relay’s application to store

• The calibration algorithm is run in the relay’s application
• The final value of offset is passed to all the attached DeftTs

Relays may have subnets with significant transit delays, e.g., a cross-country
TCP link, a LORA network

• non-negligible delays should be removed from the differences before
passing to the relay application

• the TDVC contains its own RTT estimator for this purpose

10

Relays

Processing and transit delay
Processing (cryptographic signing and validation) and transit delay add noise.
TDVC addresses this in two ways:
• all clock differences are quantized, always rounding down. The quantization value chosen should be

slightly greater than the normal transit/processing delay for broadcast networks
• uses a round-trip time (RTT) estimator for its neighborhood, subtracting this delay from clock

differences when non-negligible (> quantization)

TDVC uses a neighborhood-based approach to RTT that works for both unicast
and broadcast networks:
1. Members subscribe to both ping and echo publications.
2. At randomized periods, members send a ping publication.

• selects a neighbor randomly (from the clock differences list)
• id of that neighbor is used in the name of the ping publication
• current time is saved, indexed by the unique id

3. ping receiving members check the id against their own:
• if same, create an echo publication and send it
• otherwise, save current time, indexed by id in the ping

4. echo receiving members obtain the senders’s identity from the publication’s signing chain, use it to
locate the saved ping time, subtract it from the current time, and save to observed RTTs. (can be
kept per-neighborhood or per-member)

Neighborhood transit delay for broadcast networks can be used as a
quantization value

11

Notes on preliminary testing

• 8 members emulated on a single machine; rtts are < ~2msec
• uses 5ms quantization and 20ms difference tolerance

– calibrate to differences of +/-quantization
– differences that exceed tolerance restart calibration

• each member gets a random offset at initialization random(-5,5)*60ms and a
randomized drift emulation that adds (-2,2)*5ms at 2.5sec intervals (Clock
drift is more typically expected to be ~40us/sec, 12 ms in 5 min)

• the large random periodic perturbations make the experiment’s TDVC move
more than expected in normal use

• DCT provides the ability to emulate three types of connectivity: full, two
overlapping groups, and a linear arrangement (1 or 2 neighbors)

• member publishes a log message containing virtual clock when it finishes
calibration. Subtracting this from the system clock (the dctwatch timestamp)
charts members’ differences (which should be in tolerance) from the system
clock

• The first calibration convergences took +/-6sec for fully connected and
2groups, and +/-30sec for linear arrangement. Convergence delays include
the built-in wait times

12

13

Eight members fully connected via broadcast

All 8 have the same offset after first calibration - the difference (max of 14ms)
is just variations in the processing and capture times

14

Split the members into two overlapping groups (a hack that can be accessed by
compiling with the MESHTEST=2 flag)

15

Next, order member by pid, each talks to adjacent members (MESHTEST=1flag)

Some members pass calibration, then hear from
others, causing calibration to restart

differences stay under 15ms

16

RHS starts LHS starts

Connect through relays starting right-side members and relay first

TCP

17

TCP

Next steps

• Larger scale testing will be coordinated by Operant Networks
• investigate convergence properties
• investigate robustness to connectivity changes
• investigate parameters

• Integrate the (existing) round-trip delay computation into determination
of quantization and tolerance values

• Integrate use of clock capability in identities for devices with access
to accurate clocks

• Iterate core algorithm if needed.

18

