NDN Distance Vector (ndn-dv)

Varun Patil

1

Lessons from past routing protocol designs

- Internet: customers attached to the infrastructure
 - Customers announce prefixes to the network
- Routing: establish reachability to customer prefixes
 - Too many customer prefixes

 scaling challenges
 - Does the 2-level routing (router and prefix reachability) help with prefix scalability?

Two types of reachability

- Reachability to routers
 - Scales with number of routers in the network
- Reachability to end-user prefixes
 - (In NDN) Scales with number of applications
- Existing routing protocols do not explicitly or effectively separate the two
 - OSPF: 2 separate LSA types, but both sent together
 - BGP: propagates prefix reachability only

Existing Understanding

- In practice, intra-AS routing separates router and prefix reachability
 - IGP: builds the intra-AS router reachability table.
 - iBGP: builds the mapping from prefixes to next-hop routers.
- Packet forwarding performs two lookups
 - Use the BGP table to determine the exit router for a destination prefix.
 - Use the IGP table to determine how to reach that exit router.
- Locator-Identifier Separation Protocol (RFC 6830)
 - Maps customer prefixes to their network attachment points
 - Endpoint Identifiers (EIDs) and Routing Locators (RLOCs)

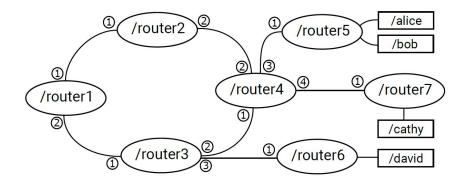
Separating reachability concerns in NDN

- ndn-dv routing establish FIB for reachability to routers
- P2Rsync, a separate prefix-to-router mapping protocol
 - #name prefixes can be orders of magnitude bigger than #routers
 - A name prefix can be reachable through multiple routers
 - A prefix may/not change its attachment point(s) frequently
- Two step Interest forwarding
 - Lookup exit router for the prefix using mapping table
 - Lookup next hop for that router

Why Distance Vector?

- Does not need topological map
 - Every router exchanges distance vector only with neighbors
 - No flooding updates
- Low overhead
 - Fewer updates changes are only propagated as far as needed
 - Simpler computation

Counting to Infinity


- RIP uses "poison reverse" as mitigation
 - But can still happen in corner cases
- With adequate topological redundancy: count to the next path
- Loops may still exist
 - They are transient
 - Some packets may loop in the data plane
- NDN forwarding breaks these loops
 - PIT / DNL detect looped packets
 - Forwarding strategy can work around them

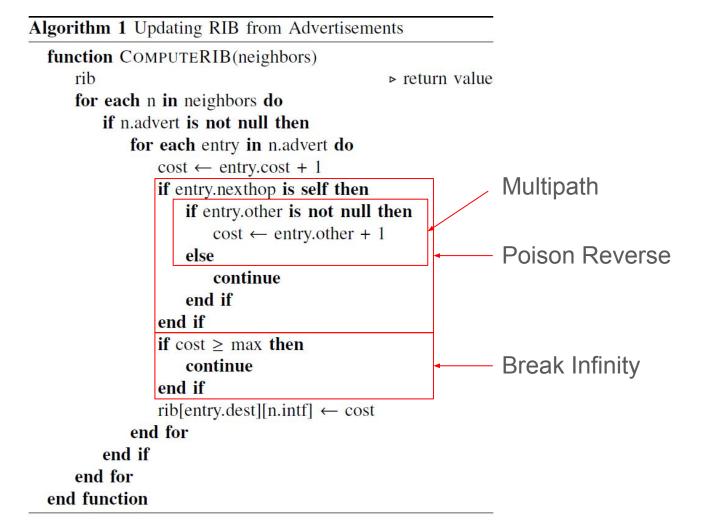
ndn-dv components

- RIB distance to each router through each interface
 - Router reachability
- Advertisement **same** message broadcast to all neighbors
 - Distance Vector
 - Extra information for multi-path reachability
- Prefix Table mapping routers to prefixes
 - Prefix reachability
- FIB computation for legacy compatibility
- Security updates secured like any other NDN application
 - Each router undergoes security bootstrapping
 - LightVerSec trust schema

Destination	Intf (1)	Intf (2)	Intf (3)
/router1	1	3	8
/router2	2	2	8
/router4	3	1	8
/router5	4	2	00
/router6	∞	∞	1
/router7	4	2	∞

TABLE I: RIB at router 3 in our example.

Destination	Next Hop	Cost	Other
/router1	/router1	1	3
/router2	/router1	2	2
/router3	/router3	0	∞
/router4	/router4	1	3
/router5	/router4	2	4
/router6	/router6	1	∞
/router7	/router4	2	4


TABLE II: Advertisement generated by router 3.

Name Prefix	Exit Router
/alice	/router5
/bob	/router5
/cathy	/router7
/david	/router6

TABLE III: Global prefix table in our example.

Name Prefix	Next Hops
/alice	intf=2 (cost=2), intf=4 (cost=4)
/bob	intf=2 (cost=2), intf=4 (cost=4)
/cathy	intf=2 (cost=2), intf=4 (cost=4)
/david	intf=3 (cost=1)

TABLE IV: FIB at router 3 in our example.

Prefix Table

- Synchronized with SVS-PS globally
- Not affected by topology change
- Ideally two step forwarding

Name Prefix	Exit Router
/alice	/router5
/bob	/router5
/cathy	/router7
/david	/router6

TABLE III: Global prefix table in our example.

Name Prefix	Next Hops
/alice	intf=2 (cost=2), intf=4 (cost=4)
/bob	intf=2 (cost=2), intf=4 (cost=4)
/cathy	intf=2 (cost=2), intf=4 (cost=4)
/david	intf=3 (cost=1)

TABLE IV: FIB at router 3 in our example.

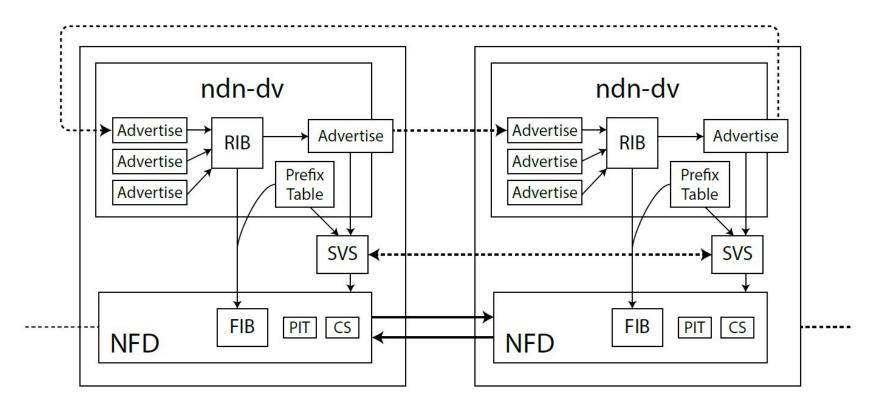
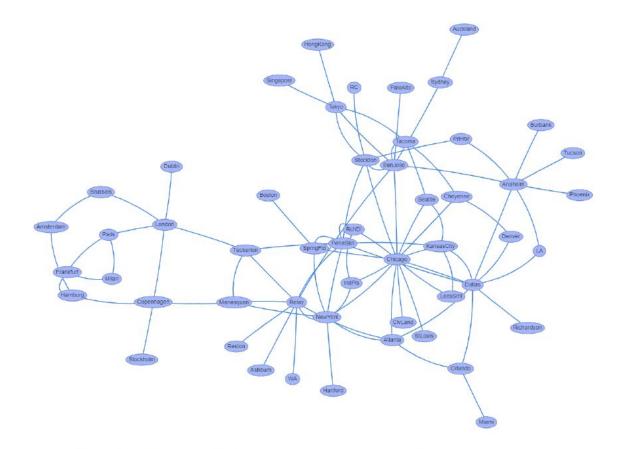
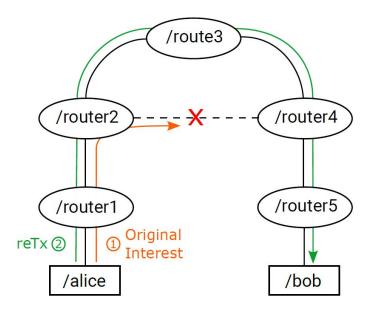
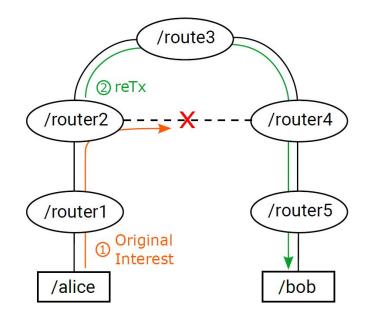


Fig. 1: Design overview of ndn-dv.

Preliminary Evaluation

- 52-node topology, 50ms delay on each link
 - Emulated in MiniNDN
 - <u>https://github.com/pulsejet/eval-ndn-dv</u>
- 80 randomly setup flows, 100 data interest per second
 - Emulate application behavior
- Mean-Time-To-Failure (MTTF) = $4000s \rightarrow 300s$
- Mean-Time-To-Recovery (MTTR) = 120s
- Measure fraction of satisfied Interests


Fig. 3: Sprint PoP topology used for evaluations.

Evaluation w/ Retransmissions

Baseline – no retransmission

Best route w/ retransmissions

Best two routes strategy (experimental)

Evaluation

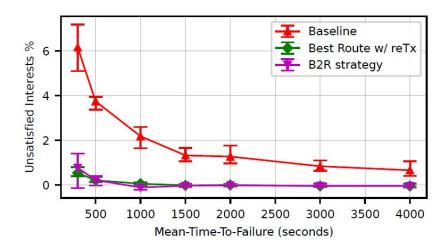


Fig. 7: Fraction of unsatisfied Interests with ndn-dv.

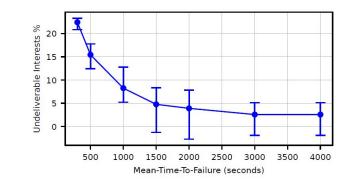


Fig. 6: Unsatisfiable Interests due to network partitions.

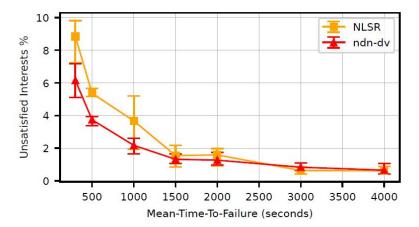


Fig. 8: Baseline comparison of ndn-dv with link-state.

Final Notes

- NDN forwarding breaks loops in the data plane
- NDN can effectively use a simple DV routing protocol
- Scaling by separating router and prefix reachability
 - Prefix to router mapping table, synchronized with NDN Sync
 - Also usable with any other NDN routing protocols

- Implementation and specification available in NDNd
 - <u>https://github.com/named-data/ndnd/tree/main/dv</u>
 - <u>https://github.com/named-data/ndnd/blob/main/docs/daemon-example.md</u>
 - <u>https://github.com/named-data/ndnd/blob/main/dv/SPEC.md</u>