NDN Distance
Vector (ndn-dv)

Varun Patil

Lessons from past routing pratocol designs

e Internet: customers attached to the infrastructure
o Customers announce prefixes to the network

e Routing: establish reachability to customer prefixes

o Too many customer prefixes [scaling challenges
o Does the 2-level routing (router and prefix reachability) help with prefix scalability?

https://github.com/named-data/ndnd

https://github.com/named-data/ndnd

Two types of reachability

e Reachability to routers
o Scales with number of routers in the network
e Reachability to end-user prefixes
o (In NDN) Scales with number of applications
e Existing routing protocols do not explicitly or effectively separate the two

o OSPF: 2 separate LSA types, but both sent together
o BGP: propagates prefix reachability only

Existing Understanding

e In practice, intra-AS routing separates router and prefix reachability
o IGP: builds the intra-AS router reachability table.
o iBGP: builds the mapping from prefixes to next-hop routers.
e Packet forwarding performs two lookups
o Use the BGP table to determine the exit router for a destination prefix.
o Use the IGP table to determine how to reach that exit router.
e Locator-ldentifier Separation Protocol (RFC 6830)

o Maps customer prefixes to their network attachment points
o Endpoint Identifiers (EIDs) and Routing Locators (RLOCs)

Separating reachability concerns in NDN

e ndn-dv routing - establish FIB for reachability to routers

e P2Rsync, a separate prefix-to-router mapping protocol

o #name prefixes can be orders of magnitude bigger than #routers
o A name prefix can be reachable through multiple routers
o A prefix may/not change its attachment point(s) frequently

e Two step Interest forwarding
o Lookup exit router for the prefix using mapping table
o Lookup next hop for that router

Why Distance Vector?

e Does not need topological map
o Every router exchanges distance vector only with neighbors
o No flooding updates

e Low overhead

o Fewer updates - changes are only propagated as far as needed
o Simpler computation

Counting to Infinity

e RIP uses “poison reverse” as mitigation
o But can still happen in corner cases

e With adequate topological redundancy: count to the next path

e Loops may still exist

o They are transient

o Some packets may loop in the data plane
e NDN forwarding breaks these loops

o PIT/DNL detect looped packets
o Forwarding strategy can work around them

ndn-dv components

RIB - distance to each router through each interface
o Router reachability
Advertisement - same message broadcast to all neighbors

o Distance Vector
o Extra information for multi-path reachability

Prefix Table - mapping routers to prefixes
o Prefix reachability

FIB computation - for legacy compatibility

Security - updates secured like any other NDN application

o Each router undergoes security bootstrapping
o LightVerSec trust schema

Destination | Intf (1) | Intf (2) | Intf (3)
/routerl 1 3 00
/router2 2 2 00
/router4 3 1 o0
/router5 4 2 00
/router6 00 00 1
/router7 4 2 00

TABLE I: RIB at router 3 in our example.

Destination | Next Hop | Cost | Other
/routerl /routerl 1 3
/router2 /routerl 2 2
/router3 /router3 0 00
/router4 /router4 1 3
/routerS /router4 2 4
/router6 /router6 1 00
/router7 /router4 2 4

TABLE II: Advertisement generated by router 3.

Name Prefix | Exit Router
/alice /routerS
/bob /router5
/cathy /router?
/david /router6

TABLE III: Global prefix table in our example.

Name Prefix Next Hops
/alice intf=2 (cost=2), intf=4 (cost=4)
/bob intf=2 (cost=2), intf=4 (cost=4)

intf=2 (cost=2), intf=4 (cost=4)
intf=3 (cost=1)

TABLE IV: FIB at router 3 in our example.

/cathy
/david

Algorithm 1 Updating RIB from Advertisements

function COMPUTERIB (neighbors)
rib > return value
for each n in neighbors do
if n.advert is not null then
for each entry in n.advert do
cost « entry.cost + 1

if entry.nexthop is self then Multipath
if entry.other is not null then /
cost « entry.other + 1 ’
else Poison Reverse
continue
end if
end if
if cost > max then
continue Break Infinity
end if
rib[entry.dest][n.intf] < cost
end for
end if
end for

end function

Prefix Table

e Synchronized with SVS-PS globally Name Prefi | L Router
alice router:

e Not affected by topology change Jbob Jrouters

e Ideally - two step forwarding e

TABLE III: Global prefix table in our example.

Name Prefix Next Hops
/alice intf=2 (cost=2), intf=4 (cost=4)
/bob intf=2 (cost=2), intf=4 (cost=4)
/cathy intf=2 (cost=2), intf=4 (cost=4)
/david intf=3 (cost=1)

TABLE IV: FIB at router 3 in our example.

ndn-dv ndn-dv
--1»{ Advertise —> »| Advertise [71========"1 --t» Advertise —> | Advertise
RIB RIB
Advertise L Advertise Y
Prefix Prefix
Advertise / Table Advertise / Table
= X
SVS [€mqrmmmmmmmmebemcee e e e e SVS
Y) Y
- FIB | [PIT][CS] FIB
NFD < NFD

Fig. 1: Design overview of ndn-dv.

12

Preliminary Evaluation

52-node topology, 50ms delay on each link
o Emulated in MiniNDN
o https://github.com/pulsejet/eval-ndn-dv

80 randomly setup flows, 100 data interest per second
o Emulate application behavior

Mean-Time-To-Failure (MTTF) = 4000s — 300s
Mean-Time-To-Recovery (MTTR) = 120s
Measure fraction of satisfied Interests

13

https://github.com/pulsejet/eval-ndn-dv

«\‘
LU
ﬁ.g@g%}"

Fig. 3: Sprint PoP topology used for evaluations.

Evaluation w/ Retransmissions

1 Baseline — no retransmission

/route3 /route3
@ reTx
/router2 » - ------+ /router4 /router2 »--------+ /routerd
/router1 /router5 @teﬂ / rou@
Original Original
eTx @ @ Interest Y ® Interest
/alice /bob /alice /bob
Best route w/ retransmissions Best two routes strategy

(experimental)

15

E

Unsatisfied Interests %

Fig

valuation

—— Baseline

6 - —&— Best Route w/ reTx
—— B2R strategy

4 -

2 -

=

o-&*‘ e —

. 7: Fraction of unsatisfied Interests with ndn-dv.

500 1000 1500 2000 2500 3000 3500 4000
Mean-Time-To-Failure (seconds)

20 A

15 4

10 A

Undeliverable Interests %

T T T T T T T T
500 1000 1500 2000 2500 3000 3500 4000

Mean-Time-To-Failure (seconds)

Fig. 6: Unsatisfiable Interests due to network partitions.

10 +
NLSR

ES —— ndn-dv
n 8-
b
(%2}
g
g
=
©
Q9
=
4
D
©
(%2}
C
D

0 1 1 1] 1 1 L) T

500 1000 1500 2000 2500 3000 3500 4000
Mean-Time-To-Failure (seconds)

Fig. 8: Baseline comparison of ndn-dv with link-state.

16

Final Nates

e NDN forwarding breaks loops in the data plane
e NDN can effectively use a simple DV routing protocol

e Scaling by separating router and prefix reachability

o Prefix to router mapping table, synchronized with NDN Sync
o Also usable with any other NDN routing protocols

e |Implementation and specification available in NDNd
o https://github.com/named-data/ndnd/tree/main/dv
o https://github.com/named-data/ndnd/blob/main/docs/daemon-example.md

o https://github.com/named-data/ndnd/blob/main/dv/SPEC.md

17

https://github.com/named-data/ndnd/tree/main/dv
https://github.com/named-data/ndnd/blob/main/docs/daemon-example.md
https://github.com/named-data/ndnd/blob/main/dv/SPEC.md

