
SASW, Secure and Automated 
Scientific Workflow

Susmit Shannigrahi, Manas Das, Lixia Zhang



Scientific Workflows are Increasingly Collaborative and Distributed

https://www.cell.com/cell/fulltext/S0092-8674%2824%2901027-4 https://emerge-network.org/emerge-sites/



A Sample multi-omics genomics workflow

https://www.biorxiv.org/content/biorxiv/early/2014/08/23/008383.full.pdf



A Distributed Approach Comes with Interesting Challenges

Geographically distributed 
computation placement

Matching computations 
with resource availability

Local policy and security Complex coordination 
across sites



Perfect for decentralization

● Traditional workflow systems rely on centralized controllers

● Centralized bottlenecks restrict scalability, fault tolerance, and 
flexibility

● Multi-institutional workflows require autonomy

● Challenge: Enable coordination without centralized orchestration



Prior Work: Semantic Naming for Computation 
Tasks

https://ieeexplore.ieee.org/document/10820568



System overview - Workflow to DAG



SASW Core 
Architecture: Built 
for Decentralized 
Execution

• Workflows broken into tasks (DAG model)

• Each task has:

• Semantic input/output names

• Resource requirements

• Execution metadata

• Nodes learn of tasks via synced task 
table

• Nodes claim tasks based on local 
resource state

• Execution proceeds as data becomes 
available—no centralized trigger



What does such a DAG look like?

● Workflows can be mapped to a DAG



The other aspects: 
Nodes and Security

• Federated Nodes: Nodes can belong to different 
organizations; no central control.
• Trust Bootstrapping: Each entity gets a certificate from 
a domain controller (trust anchor).
• Semantic Naming: Entities and data are named 
uniquely and meaningfully (e.g., /sasw.domain/user/alice).
• Authenticated Identity: Workers use DNS; users use 
email for identity verification.
• Data-Centric Security: Tasks and data are 
signed/encrypted using named public keys (e.g., 
/entity/KEY/<id>).



Decentralized Mechanisms in Action

Task Dissemination
No global queue

 all nodes see the same 
DAG/task table

Task Claiming
Nodes independently match 
tasks to available resources

Competing nodes resolve via 
local policy

Data Publication
Tasks publish output under 
semantic names

Results flow to next eligible 
tasks in DAG

Next-stage nodes discover 
data, trigger task claim

Security Without Central 
Trust
All data is signed and 
semantically named

Access policies enforced per-
node, not per-system

No centralized policy 
enforcement needed



Data-Driven Task Scheduling

Task X
/Data X 

Task Y 

Task Z
/Data Z 

Depends on:
/Data X
/Data Z



Data-Driven Task Scheduling

Task X
/Data X
(Ready) 

Task Y

Task Z
/Data Z
(Ready) 

Depends on:
/Data X
/Data Z

Task 
Table A

Task 
Table B

Task 
Table C

Sync

Node A
(Claim)



This is where we can do intelligent and 
decentralized scheduling

Task 
Table A

Task 
Table B

Task 
Table C

Sync

Node A
(Claim)

● Nearest
● Optimized
● Policy based

○ Institutional/geographical constraints
○ resource constraints



Once Results are available, name and store them



Challenges and Research Opportunities

Efficient 
decentralized 
task 
dissemination

Handling 
conflicting task 
claims

Renders well to 
multi-objective 
optimization 
problems

Monitoring and 
observability 
without global 
control

Federated 
debugging and 
logging

How do we 
provide safety 
and liveness in 
such a system?



Conclusion

• SASW is a step toward truly 
decentralized scientific computing

• No schedulers, no controllers—just 
tasks, data, and nodes

• Enables flexible, secure, large-scale 
scientific workflows

• Aligns with real-world scientific 
collaboration needs

Thank you!


