SASW, Secure and Automated Scientific Workflow

Susmit Shannigrahi, Manas Das, Lixia Zhang

https://www.cell.com/cell/fulltext/S0092-8674%2824%2901027-4

https://emerge-network.org/emerge-sites/

A Sample multi-omics genomics workflow

https://www.biorxiv.org/content/biorxiv/early/2014/08/23/008383.full.pdf

A Distributed Approach Comes with Interesting Challenges

Geographically distributed computation placement

Matching computations with resource availability

Local policy and security

Complex coordination across sites

Perfect for decentralization

- Traditional workflow systems rely on centralized controllers
- Centralized bottlenecks restrict scalability, fault tolerance, and flexibility
- Multi-institutional workflows require autonomy
- Challenge: Enable coordination *without* centralized orchestration

Prior Work: Semantic Naming for Computation

System overview - Workflow to DAG

SASW Core Architecture: Built for Decentralized Execution

- Workflows broken into tasks (DAG model)
 - Each task has:
 - Semantic input/output names
 - Resource requirements
 - Execution metadata
 - Nodes learn of tasks via synced task table
 - Nodes claim tasks based on local resource state
 - Execution proceeds as data becomes available—no centralized trigger

The other aspects: Nodes and Security

- **Federated Nodes:** Nodes can belong to different organizations; no central control.
- **Trust Bootstrapping:** Each entity gets a certificate from a domain controller (trust anchor).
- **Semantic Naming:** Entities and data are named uniquely and meaningfully (e.g., /sasw.domain/user/alice).
- Authenticated Identity: Workers use DNS; users use email for identity verification.
- **Data-Centric Security:** Tasks and data are signed/encrypted using named public keys (e.g., /entity/KEY/<id>).

Decentralized Mechanisms in Action

Task Claiming Nodes independently match tasks to available resources

Competing nodes resolve via local policy

Data Publication Tasks publish output under semantic names

Results flow to next eligible tasks in DAG

Next-stage nodes discover data, trigger task claim

Security Without Central Trust All data is signed and semantically named

Access policies enforced pernode, not per-system

No centralized policy enforcement needed

This is where we can do intelligent and decentralized scheduling

- Nearest
- Optimized
- Policy based
 - O Institutional/geographical constraints
 - resource constraints

Once Results are available, name and store them

Challenges and Research Opportunities

Efficient decentralized task dissemination

Handling conflicting task claims

Renders well to multi-objective optimization problems

Monitoring and observability without global control

r		1	N	
L			Ľ	1
L		1		
L	-			
L	-			
L				
L	-			
L				

Federated debugging and logging

~	_
~	_
~	_
~	

How do we provide safety and liveness in such a system?

Conclusion

- SASW is a step toward **truly** decentralized scientific computing
- No schedulers, no controllers—just tasks, data, and nodes
- Enables flexible, secure, large-scale scientific workflows
- Aligns with real-world scientific collaboration needs

Thank you!