
Ownly
The NDN Workspace

1



What is Ownly?
● Fully decentralized collaborative workspace
● Built over the Named Data Networking stack

○ Secured with name-based security primitives
○ Communication based on NDN primitives

● End-to-end encryption
● Focus on end-user usability

https://ownly.work

2



What can it do?

3



How is Ownly different?
● Decentralized

○ The workspace owner has full control
○ No third party has any control power
○ Runs on permissively licensed open-source infrastructure

● Local-first
○ No central control or storage server required
○ Truly peer-to-peer

● Secure
○ Fine-grained name-based control with trust schema
○ Data is end-to-end encrypted

All of the above enabled by Named Data Networking

4



Design and Implementation Philosophy
● Build a real decentralized application

○ Data-centric – applications handle data rather than channels
○ Secure data directly – eliminate gatekeepers
○ Peer-to-peer – no dependency on central servers

● Implement a generalized set of libraries usable in other applications
○ Implemented as a part of the NDNd standard library (Golang)
○ Precursor implementation in NDNts (TypeScript)

● Focus on usability and user experience
○ Minimize human costs

5



Data Centric Apps with NDN
● Producer publishes Data: named and secure each piece

○ Just make one’s data available
○ Data =/= Data packet

● Consumer fetches desired data by name, validates them
● Synchronize the dataset among all parties by Sync
● Resilient communication: make use of any available connectivity

○ Ethernet, WiFi, Bluetooth
○ TCP/UDP tunnels
○ HTTP, WebSocket
○ Avian Carriers

6



7



Ownly Architecture

8



Ownly Architecture - Implementation

9



Ownly Application - CRDT

10

The Document Changes

Yjs CRDT

● Sequentialize changes to solve conflicts
● Mature algorithms and implementations
● Eventual consistency

@xinyu/DATA/1
Insert: “\docu…”
Author: Xinyu

@tianyuan/DATA/1
Insert: “\sect…”
Author: Tianyuan

@xinyu/DATA/2
Insert: “\end{...”
Author: Xinyu



Example Workflow: Capture the Change

11

Yjs CRDT

CRDT gets notified and 
extracts a new change

Insert: “Add some text.”
Pos: 118
(Internal data…)



Example Workflow: Wrap into Data Record

12

/owner/wksp/@xinyu/DATA/3

Insert: “Add some text.”
Pos: 118
Author: Xinyu
(Internal data…)

Insert: “Add some text.”
Pos: 118
(Internal data…)

Sign by /owner/wksp/@xinyu

IndexedDB

Browser’s storage

Save

SVS
Provider

Publish



Example Workflow: Apply Change

13

Tianyuan’s
side

/owner/wksp/@xinyu/DATA/3

Insert: “Add some text.”
Pos: 118
Author: Xinyu
(Internal data…)

Browser’s storage

Yjs CRDT

CRDT computes the new 
document based on the new 

change

Save
Frontend
Update

SVS
Provider

Subscribe

IndexedDB



Browser as a platform
● Ownly is implemented in TypeScript and Go

○ Runs on all platforms with WebAssembly

● Browsers support most functionality needed to run NDN Apps
○ Local-first functionality, e.g. persistent databases and filesystem
○ Continuously improving WASM support

● Multiple connectivity options
○ WebSocket (current implementation)
○ QUIC Datagrams (NDNts)
○ WebRTC (?)

14



Browser as a platform

15



Exchanging App Data Securely: Basic Ingredients
● Naming

○ Each user needs a unique name – DNS and derived names
○ Each piece of data is uniquely named and immutable

● Security
○ Each piece of data should be directly secured

● Sync
○ Consumers should be notified of data production 

● Storage
○ Data should always be available for consumption

16



Naming Users and Data
● Using DNS and DNS derived names: 

○ DNS name delegation
○ With an assigned DNS name N, one can assign any other names under N

■ “named-data.net”

● Name each user
○ “gmail.com/@alice”

● Name each application instance
○ “named-data.net/ndncomm-2025”

● Name each piece of data
○ “named-data.net/ndncomm-2025/gmail.com/@alice/DATA/seq=8”

● Important: well-designed naming conventions

17



Securing Named Data

● Trust Anchor
● Certification of identity

○ For the user’s identity, e.g. “gmail.com/@alice”
○ In the application, e.g. “named-data.net/ndncomm-2025/gmail.com/@alice”

● Security Policies – who can say what
○ Semantic naming enables systematic definition of security policies

Users need to security bootstrapped

18



Security Bootstrapping in NDN
● An NDN based system: made of named entities with trust relations 

among them
○ Network delivery uses the same namespace by apps/users at high layers

● A new NDN entity N entering the system: the bootstrapping step provides 
N a set of security parameters (certificate, trust anchor, security policies)

○ Producer: which key to use to sign data
○ Consumer: is received data signed by a valid key

● After bootstrapping: N can sign data produced, verify received data

19



Identity Bootstrapping in Ownly
● Install Trust Anchor out-of-band

○ Bundled with the application code
○ Can be user-configurable (planned)

● Reuse external identity for users
○ Email address
○ DNS namespace ownership (planned)
○ Requirement: unique and verifiable

● Verify external identity and issue identity certificate
○ NDNCERT protocol, CA running on global NDN testbed

■ Email Challenge
○ Certificate proves user identity to other Ownly users
○ NDNCERT CA only verifies identity, does not control application

20



Security Policies – Trust Schema
● Ownly uses LightVerSec to define trust policy
● Static schema bundled with compiled application

21



Dynamic Security Policies – CrossSchema
● Security policies may need to change at runtime

○ E.g. inviting users to a workspace
○ Need to allow users to publish data under the owner’s namespace

● Break up schema into smaller pieces
○ These are generated at runtime
○ The schema itself is a signed NDN data

● Producer attaches required schema to NDN Data
○ NDN Data describes how it can be verified
○ KeyLocator + CrossSchema

22



Invitations in Ownly
● Invitations are policies

○ Allow a user identity to read and publish data in the workspace

● Multiple possible designs
○ Allow users to self-certify their workspace identity

■ Owner produces policy rule to allow this for a particular identity
■ CrossSchema is attached to workspace identity certificate

○ Owner directly certifies each user
■ Requires a key directory and an additional exchange
■ Each workspace can have an independent trust anchor
■ Eliminates identity verifier from trust chain

23



Invitations in Ownly

24



Confidentiality
● Group key encryption
● Two shared secrets

○ PSK - shared with invitation link (static)
○ DSK - managed in the group (dynamic)

● Key exchange during bootstrapping
○ Request DSK once you can produce data
○ Any group member can respond (after ECDH exchange)

● No central controller - E2EE

25



Decentralized Transport with NDN Sync
● How to notify users of a new change?
● State Vector Sync protocol

○ Producer increments a sequence number on new data
○ Reliably synchronize sequence numbers (multicast a “Sync Interest”)

26



SVS-PS
● High Level API to synchronize data over SVS

○ SvsPS(<group>, <name>)
○ publish(<name>, <blob>)
○ subscribe(<producer-prefix>, callback(<producer>, <blob>))

● Fetches data from all subscribed producers automatically
○ Per-member ordering
○ Eventual consistency

● Handles security, segmentation and snapshots internally
○ Both signing and validation are internal (just supply policy and trust anchor)
○ Multiple snapshot strategies - reduce bootstrapping time

● Alternative - SVS PubSub (SVS-PS)
○ Allows application to selectively fetch data objects

27



Sync Group Granularity
● Trade-off

○ More groups = more overhead
○ Less groups = more unused information

● One Sync group for each workspace
○ Exchange workspace metadata
○ Membership management
○ Chat Module

● One Sync group for each “project”
○ Directory structure
○ CRDT deltas

28



Transparent In-Network Storage - Sync Repo
● Repo runs as a network-provided service

○ Run by a provider or ISP for a cost

● Application asks repo to join Sync group
○ Announces app data prefix

● Repo fetches all data on the group
○ Needs to verify data before storage
○ Does not need to decrypt – untrusted storage
○ Makes data available even producer is gone

● Sync functions as usual, but now with availability
○ “Transparent” – application does not interact with storage
○ Repo tracks latest Sync Data

29



Ownly - Deployment
● NDN Connectivity using NDN Testbed

○ https://named-data.github.io/testbed/
○ Does not have control power

● Testbed NDNCERT infrastructure for identity verification
○ Alternative – each workspace can run its own NDNCERT CA
○ Tested with original NDN Workspace implementation

● Static application hosted on Netlify

30

https://named-data.github.io/testbed/


Future / Ongoing Work
● Completing Encryption Implementation

○ Consider key rotation

● Verifying data after certificates expire
○ Ideas from NDN DeLorean

● Snapshot efficiency and rollback
○ Make bootstrapping faster
○ Reduce duplication of data

31


